Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plasmon‐mediated synthesis enables isotropic metal nanocrystal growth with linearly polarized light. This limits the effect of the polarization of incident light during synthesis, and thus restricts the structural chirality of nanocrystals produced with circularly polarized light (CPL). This study here demonstrates that surface engineering of initial achiral silver nanorods (AgNRs) can enhance the structural chirality of the resulting nanostructures produced with CPL. Specifically, the surface ligand hexadecyltrimethylammonium bromide (CTAB) stabilizes the lateral (100) facet‐terminated sides of achiral AgNRs and inhibits lateral growth. This surface engineering with achiral ligands results in increased dissymmetry of the nanostructures during the early stages of photo‐growth and leads to the formation of “hook” structures, where silver preferentially deposits near the tips of the nanorods. Upon further CPL illumination, these “hook” structures exhibit a significantly larger dissymmetry in the local electric field enhancement distribution compared to the initial achiral AgNRs. This highly dissymmetric electric field enhancement profile influences subsequent growth, resulting in AgNRs with enhanced structural chirality. Notably, the optical dissymmetry of these chiral nanostructures withg‐factor≈0.05 is an order of magnitude greater than that reported in previous studies conducted under similar chemical conditions but without surface engineering.more » « less
-
Abstract All‐optical control and detection of magnetic states for high‐density recording necessitate nanophotonic approaches to amplify local light intensity below the diffraction limit. Sculpting the near‐field phase and polarization can additionally strengthen magneto‐optical effects that rely on circularly polarized pulses, such as all‐optical helicity‐dependent switching, imaging, and spin‐wave excitation. Here, high‐refractive‐index dielectric nanoantennas illuminated with circularly polarized light resonantly enhance local electric field rotation by more than sixfold within [Pt/Co]Nthin films. Sub‐wavelength arrays of amorphous Si nanodisks, or metasurfaces, patterned on perpendicularly magnetized films support Mie‐type resonances that modulate reflection and transmission dissymmetry by >±2% in experiments. Spatial and spectral interference between dipolar modes, proximity effects, and gain are evaluated by varying disk aspect ratio, metasurface–metal separation, and magnetic film thickness, respectively. Simulated enhancements in magnetic circular birefringence and differential absorption are correlated with amplified local field rotation at electric dipolar modes. Greater achievable amplifications are shown via simulations with single‐crystalline Si metasurfaces exhibiting lower losses, including a 12‐fold strengthened electric field rotation within ferromagnetic layers. The metasurface design rules established here could enable nanoscale localization of all‐optical magnetic switching with lowered laser fluence thresholds, as well as enhanced magneto‐optical responses for light‐assisted reading in spintronic devices.more » « less
An official website of the United States government
